
Newton’s Identities

Milan Mossé

This note introduces Newton’s identities, rehearses some proofs of them, and catalogues a few others.1

1 Introduction

Consider a field F and a polynomial f in F [x] of degree n with roots x1, ..., xn. Let us assume that f is
monic, i.e., that the coefficient of xn is 1. Express

f(x) = s0x
n + s1x

n−1 + · · ·+ sn−1x+ sn

=

n∏
i=1

(x− xi).

Expanding the above product, observe that

si = (−1)i
∑

j1<...<ji

xj1 · · · xji .

The polynomial si in x1, .., xn is symmetric (it does not change if we renumber the roots xi) and homogenous
(all terms have the same degree). The polynomials s′i = si · (−1)i are called elementary symmetric polyno-
mials, since every symmetric polynomial in x1, ..., xn can be uniquely written as a polynomial in s′1, ..., s

′
n.

We say that the s′i form a basis for all such symmetric polynomials. Another such basis is given by p1, ..., pn,
where

pi(x1, ..., xn) = xi
1 + · · ·xi

n.

The polynomials pi are called power sums. The transition formulas between these two bases are known
as “Newton’s formulas” or “Newton’s identities,” and they first appeared in Isaac Newton’s Arithmetica
universalis, written between 1673 and 1683. In these notes, we outline some proofs of these identities, which
can be stated as follows:

Theorem 1.1 (Newton’s identities). Fix some positive integer k. We have

ksk +

k−1∑
i=0

sipk−i = 0 if k ≤ n

n∑
i=0

sipk−i = 0 if k > n

Adopting the convention of stipulating that si = 0 whenever i > n, we arrive at a more concise formulation:

ksk +

k−1∑
i=0

sipk−i = 0.

1The introduction owes much to Reichstein (2000). If you see any typos or have any suggested improvements, please don’t
hesitate to let me know—you can find my email, along with the most recent version of this document, on my website. Thanks
to Ian Baynham, Davin Halim, and Grant Gustafson for helpful suggestions and corrections.
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Note that there are infinitely many identities: one for each choice of k. This is why a lot of people call the
above theorem “Newton’s identities” and not “Newton’s identity.” We can use these identities to calculate
pk for any k, using the coefficients of f . For example, we have the Newton identity

ksk + s0pk +

k−1∑
i=1

sipk−i = 0,

and we can rearrange to solve for pk. Recalling that s0 = 1, we have

pk = (−1)(ksk +

k−1∑
i=1

sipk−i).

For example, suppose n = 3. Then, using the roots x1, x2, x3 of f , we have

p1 = −s1 = −(−1)1(x1 + x2 + x3) = x1 + x2 + x3,

p2 = −(2s2 + s1pk−1) = −(2(x1x2 + x2x3 + x1x3)− (x1 + x2 + x3)p1)

= (x1 + x2 + x3)
2 − 2(x1x2 + x2x3 + x1x3) = x2

1 + x2
2 + x2

3.

(Note that we don’t actually need to know what the roots are in order to use the formulae to solve for pk; we
just need the coefficients si of f .) The above formulas for p1 and p2, and the analogous ones for pi with i ≤ 6,
were obtained by Albert Girard in 1629, over 30 years before Newton’s work (though Newton is thought not
to have known this). For this reason, Newton’s identities are also known as the Newton–Girard formulae.

We will turn shortly to our first proof of Newton’s identities, but first, a brief remark. The assumption
that f is monic is not strictly necessary: we could allow a0 ̸= 0, and then we would find that

f(x) = s0x
n + s1x

n−1 + · · ·+ sn−1x+ sn

= s0

n∏
i=1

(x− xi),

and then we would have

si =

(
1

s0

)
(−1)i

∑
j1<...<ji

xj1 · · · xji .

The identities, with si defined in this new way, would then hold. (Indeed, as we will see, they are sometimes
stated and proven that way, e.g. Eidswick (1968).) But this makes the expression for si messier than it
already is, so for readability, we’ll often assume f is monic. Now, let us consider our first proof of Newton’s
identities.

2 Proof from the case n = k

We prove the special case n = k and derive the general identities from this case.

Theorem 2.1. Let k = n. We claim that

ksk +

k−1∑
i=0

sipk−i = 0.

Proof. Let f be as above, with roots x1, ..., xn. Recall that

f(x) = s0x
n + s1x

n−1 + · · ·+ sn−1x+ sn

Thus for any j between 1 and n:

f(xj) = sk +

k−1∑
i=0

six
k−i
j = 0.

Summing over all j gives the desired result.
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The general identities follow from this one. Indeed, suppose first that k > n. Informally, we can add an
extra k − n roots to f , and then set them equal to 0 to obtain the identity

ksk +

k−1∑
i=0

sipk−i = 0

Formally, let

g(x) = f(x)

k∏
i=k−n+1

(x− αi),

where the αi are arbitrary. Then run the earlier argument on g instead of f , and set the αi to 0. Since

si = (−1)i
∑

j1<...<ji

xj1 · · · xji ,

any term in which an αi appears will be equal to 0, and the desired identity holds.
Now, suppose instead that k < n. We would like to show that

ksk +

k−1∑
i=0

sipk−i = 0.

If we combine like terms, it will suffice to show that the coefficient of any term

xa1
1 · · · xan

n , with each ai a nonnegative integer,

is 0. Since at most k of the ai are nonzero, we can delete at least n− k roots xi from the monomial and not
change its value. But then we know that the coefficient of the monomial must be 0. For we have, in effect,
set n − k of the roots xi to 0, and are dealing with the case where f is a polynomial of degree k; and we
know from this case that the identity holds, i.e., that the coefficients of the combined terms are 0.

3 Combinatorial proof

In this section, we outline a combinatorial proof of Newton’s identities, due to Zeilberger (1985):

Theorem 3.1. Fix some positive integer k. We have

ksk +

k−1∑
i=0

sipk−i = 0.

Proof. Consider the set A (n, k) of tuples (A, j, ℓ) where

(i) A is a subset of [n], with |A| at most k. (Recall that [n] is the set of whole numbers {1, ..., n}.)

(ii) j is a member of [n].

(iii) ℓ = k − |A|

(iv) If ℓ is 0, then j is in A.

Define the weight of (A, j, ℓ) by

w(A, j, ℓ) = (−1)|A|( ∏
a∈A

xa

)
· xℓ

j .

For example, for k = 5 we have

w({1, 3, 5}, 4, 2) = (−1)3x1x3x5 · x2
4.
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To show the theorem, it will suffice to show that the sum in the theorem is the sum of the weights of all
elements of A (n, k), and that this sum is 0.

First, we show that that the sum in the theorem is the sum of the weights of all elements of A (n, k).
Using the identities in the introduction, we have

ksk +

k−1∑
i=0

sipk−i+ = k(−1)k
∑

j1<...<jk

xj1 · · · xjk+

k−1∑
i=0

(−1)i(xk−i
1 + · · ·xk−i

n )
∑

j1<...<ji

xj1 · · · xji (∗)

There are two summands on the RHS. First, we consider the first summand:

k(−1)k
∑

j1<...<jk

xj1 · · · xjk · 1.

Set A = {j1, ..., jk}. Then as we range over choices of indices, we range over all choices of A. Since ℓ is 0,
xℓ
j = 1 contributes nothing to the product (but is written above on the RHS, for clarity). By (iv), j is in A.

This gives k choices of j: ∑
|A|=k;j∈A;ℓ=0

w(A, j, ℓ) = k ·
∑

|A|=k;ℓ=0

w(a, j′, ℓ),

where j′ is an arbitrary element of A. This shows that the first summand in (∗) can be written as the sum of
all weights of elements of A (n, k) with |A| = k. To see that all other elements make up the other summand
in (∗), one can multiply it out.

It remains for us to show that the sum of the weights of all elements of A (n, k) is 0. Define a map
T : A → A by

T (A, j, ℓ) =

{
(A− {j}, j, ℓ+ 1) if j is in A

(A ∪ {j}, j, ℓ− 1) if j is not in A

(Intuitively, T removes j from A if it’s in A and adds it to A if it’s not in A, adjusting ℓ = k − |A| as
required.) Then applying T takes us to a distinct set with opposite weight:

w(T (A, j, ℓ)) = −w(A, j, ℓ),

and T 2 is the identity (i.e., T is an involution). Thus, all the weights can be arranged in mutually cancelling
pairs, and their sum is 0.

4 Proofs using calculus

Here, following Eidswick (1968), we outline a proof using some basic calculus. For a similar proof that uses
generating functions in the context of coding theory, see page 212 of Berlekamp (1968). For a different
calculus proof that uses Laplace transforms, see Ĉırnu (2010).

To present this proof, we need to introduce and briefly discuss the n-reversal of a polynomial f , which is
just the result of arranging the coefficients of f in reverse order.

Definition 4.1. Consider a polynomial f (with roots x1, ..., xn):

f(x) = s0x
n + s1x

n−1 + · · ·+ sn−1x+ sn

=

n∏
i=1

(x− xi).

Then the n-reversal of f is the polynomial

revn(f) = snx
n + sn−1x

n−1 + · · ·+ s1x+ s0.
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In order to prove Newton’s identities, we need the following lemma and corollary:

Lemma 4.2. We have revn(f) = xnf(1/x). The roots of revn(f) are 1/xi, for any root xi of f .

Proof. By squinting, one intuits that revn(f) = xnf(1/x). Note then that if xi is a root of f , it follows that
1/xi is a root of revn(f). Since revn(f) is of degree n, all of its roots are of this form.

Corollary 4.3. Let f and g be polynomials of degrees n ≥ m, respectively, with g monic. Using the Euclidean
algorithm, express f = qg + r for some polynomials q, r. Then the reversal identity holds:

revn(f) = revn−m(q) · revm(g) + xn−m+1 · revm−1(r).

Now, we can prove Newton’s identities. For reasons that will become apparent, the less concise formula-
tion is more useful here:

Theorem 4.4. Fix some positive integer k. We have

ksk +

k−1∑
i=0

sipk−i = 0 if k ≤ n

n∑
i=0

sipk−i = 0 if k > n

Proof. Assume 0 is not a root of f , without loss of generality (why?). Then the n-reversal v = revn(f) is
well-defined. Using the above lemma,

v(x) = snx
n + sn−1x

n−1 + ...+ s0

= sn

n∏
i=1

(x− x−1
i ).

Looking at the first equality above, note that

v(k)(0) = sk · k!,

where v(k)(0) denotes the k-th derivative of v evaluated at 0. As we’ll soon see, it turns out that the
logarithmic derivative of v, when evaluated at 0, is a multiple of pk+1. This proof proceeds by turning the
relation between v and its logarithmic derivative into a relation between the polynomials sk and pk+1. We
take the logarithmic derivative of v:

V (x) =
v′(x)

v(x)
=

n∑
i=1

(x− x−1
i )−1.

To see why the equality on the RHS holds, use the generalized product rule on the factorization of v above,
noting that the derivative of each factor is 1. Now, we claim that

V (k)(0) = −k! · pk+1, (∗)

where V (k) is the k-th derivative of V . This holds because we have

V 1(x) = −1

n∑
i=1

(x− x−1
i )−2

V 2(x) = 2

n∑
i=1

(x− x−1
i )−3,

and so on, and plugging in x = 0 gives, for example, V 2(0) = −1 · 2! · p3. When k is even, the negative
sign comes from the fact that (1/ − x−1

i )k+1 is negative. When k is odd, the negative sign comes from our
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application of the power rule. This shows that (∗) is true. To complete the proof, we establish another
equality, and we apply (∗) to derive Newton’s identities.

Now, let [V (x)v(x)](k) be the k-th derivative of V (x)v(x). We have

v(k)(x) = [V (x)v(x)](k−1)

=

k−1∑
i=0

(
k − 1

i

)
V (i)(x)v(k−1−i)(x),

where the first equality comes from the definition of the logarithmic derivative V , and the second equality
comes the product rule and the binomial theorem. Now, we replace V (r) with the expression in (∗) and
rearrange to obtain

v(k)(0)

k!
= −1

k

k−1∑
i=0

v(k−1−i)(0)

(k − 1− i)!
· pi+1.

Recalling that v(k)(0) = sk · k!, we have

−ksk =

k−1∑
i=0

sk−(i+1)pi+1 if k ≤ n,

0 =

k−1∑
i=k−n−1

sk−(i+1)pi+1 if k > n,

which are Newton’s identities, if one fiddles with the indices.

5 Proof with clever notation

We owe this proof to Mead (1992). Like the approach in Reichstein (2000), and the one we saw from the
case n = k, this involves adding several equations together. First, let us just introduce the notation, to get
a feel for the approach. Let f be as above, of degree n with roots x1, .., xn. Let (a1, ..., an), where the ai are
nonnegative integers and nonincreasing from left to right, represent∑

i1<...<in

xa1
i1

· xa2
i2

· · · xan
in
.

If ai = 0 for i greater than k < n, we can write (a1, ..., ak) instead of (a1, ..., an). Then

pi = (i),

s′i = (1, ..., 1),where 1 is repeated i times.

This notation makes statements (and proofs) of Newton’s identities easier on the eyes. For example, if
n ≥ k = 3, we take

(1)(1, 1) = (2, 1) + 3(1, 1, 1),

which gives a relation among the Newton function (1) and the elementary symmetric functions (1, 1) and
(1, 1, 1). We then subtract from it (in order to eliminate the term (2, 1)) the equation

(2)(1) = (3) + (2, 1)

to obtain the Newton identity:

p3 − p2s
′
1 + p1s

′
2 − 3s′3 = 0 =⇒ 3s3 +

3−1∑
i=0

sip3−i = 0.
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The general proof is the same in spirit. To simplify notation, let (1i) = s′i be i ones, and let (m, 1i) be the
number m, followed by i ones. Now, we would like to show that

ksk +

k−1∑
i=0

sipk−i = 0.

Note that the LHS is the sum of the LHS of the following true equations, if we multiply the ith equation by
(−1)i−1:

(k − 1)(11) = (k − 0, 10) + (k − 1, 11)

(k − 2)(12) = (k − 1, 11) + (k − 2, 12)

(k − 3)(13) = (k − 2, 12) + (k − 3, 13)

...

To make sure the LHS sums correctly, we must specify last equation in the above sequence. To that end, let
t = min(k − 1, n). Then if n ≥ k = t− 1, we define the last equation as follows:

(1)(1k−1) = (2, 1k−2) + k(1k)

If instead k > n = t, we’ll instead make the last equation

(k − n)(1n) = (k − n+ 1, 1n−1).

This is to ensure that the LHS of the equations sum to the LHS of the desired Newton identity.
It remains to show that the RHS sums to 0. Since we’re multiplying each equation by increasing powers

of (-1), the terms (k − j, 1j) cancel out. For example, comparing the first and second equations, we have

(k − 0, 10) + (k − 1, 11)− [(k − 1, 11) + (k − 2, 12)],

so that the term (k − 1, 11) cancels out when we sum the first and second equations.

6 Other proofs

The interested reader may consult Reichstein (2000) for a proof by induction and Mináč (2003) for a proof by
cases. It is well-known that Newton’s identities can be applied to compute the characteristic polynomial of a
matrix in terms of the traces of the powers of the matrix (see for example the Wikipedia entry on Newton’s
identities), but one can also derive Newton’s identities using a matrix representation Kalman (2000). See
Muirhead (1904) and G. A. Baker (1959) for other proofs.
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